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THICKNESS-TWIST AND FACE-SHEAR VIBRATIONS OF A
CONTOURED CRYSTAL PLATE

JEFFREY L. BLEUSTEIN
Bell Telephone Laboratories, Inc., Whippany, New Jersey

Abstract-Solutions 'are obtained for the thickness-twist and face-shear vibrations in a crystal plate with a
linearly varying thickness. The results are compared to those obtained for a plate of constant thickness. It is
found that the frequency of the lowest thickness-twist mode of a linearly tapered plate is only slightly higher
than the frequency of the lowest thickness-twist mode of a uniform plate of the same maximum thickness. It
is also found that the frequencies of the face-shear modes in a tapered plate differ very little from those in a
uniform plate.

INTRODUCTION AND SUMMARY

INTEREST in the analysis of the vibrations of contoured plates (plates of varying thickness)
stems from at least two sources. In the first place a study of these vibrations might point
the way to the design of new transducer devices based on special features of the frequency
spectrum. Secondly, the results should be useful for determining the effe~ts of small
manufacturing errors on the frequency spectrum of a plate of nominally constant thick~

ness.
Previous studies [1], [2], of the vibrations of contoured crystal plates have dealt with

the coupled thickness~shear and flexural vibrations in which there is a nonzero component
of displacement in the direction along which the thickness varies. In the present paper,
an investigation is made of modes of motion of a contoured plate in which the displace­
ments are all perpendicular to the direction along which the thickness varies. The par­
ticular modes under consideration are the thickness-twist and the face~shear modes,
and as Mindlin and Gazis have pointed out [3], [4], they are modes of technological
interest since they can be strongly excited piezoelectrically in a quartz plate.

Thickness-twist vibrations are contained in the equations of the approximate theory
which is the starting point for the analysis in [1] and [2]. However a more general approxi­
mate theory has been developed [5] which takes into account the coupling of flexural,
extensional and face~shear deformations with each other and with the lowest thickness
orders of thickness~shear and thickness-twist deformations. In the present paper, the
equations and the notation of the more general theory are employed.

The equations are specialized to the case of an infinite strip which has a linear taper
in the direction perpendicular to its infinite dimension. In the sequel this strip will be
referred to simply as a plate. It is found that the frequency of the lowest thickness~twist

mode of a linearly tapered plate is only slightly higher than the frequency of the lowest
thickness~twist mode of a uniform plate whose thickness is equal to the maximum thick~

ness of the tapered plate. In addition, the frequencies of the thickness~twist overtones
are spread out more in a tapered plate than they are in a uniform plate. These results
can be associated with the fact that the fundamental thickness-twist motion is localized
at the thick edge of the plate whereas, for the overtones, a greater portion of the plate is
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involved in the motion. It is also found that the frequencies of the face-shear modes
in a tapered plate differ very little from those in a uniform plate. This result is consistent
with the solution for a uniform plate where it is found that the frequencies of the face­
shear modes are independent of the thickness of the plate.

GOVERNING EQUATIONS

The stress-strain relation of a rotated-Y-cut quartz plate, referred to a rectangular
cartesian coordinate system, Xl' Xl' X3, with Xl a diagonal axis and Xl = 0 the middle
plane of the plate, exhibits monoclinic symmetry [6]. An abbreviated notation is employed
whereby a pair of indices which range over the integers 1, 2, 3 is replaced by a single
index ranging over the integers 1, 2, 3, 4, 5, 6 according to the scheme in Table 1 :

TABLE L ABBREVIATED NOTATION

Replace ij =
by p =

12 or 21
6

With this notation the governing equations [5] for the free vibrations of a plate of thick­
ness 2h are:

Stress equations of motion

(1)

where, a (a = 1,3) denotes the partial derivative, iJ/oxa, and the dot denotes partial
differentiation with respect to time;

Constitutive equations

where

't"~O) = 2hc;.s~O)

r~l) = ih3Y.wS~I)

p, q = 1,2, ... , 6,

a, b = 1,3,5,
(2)

no sum on p or q,

Cpq = Cpq -CplClJCl2'

CIS = ClS = C3S = C4 S = C16 = C26 = C36 = C46 = 0,

J.l = cosl(pn/2), v = cos2(qn/2),

k~ = nl {c22 +C44 -[(C2l -C44)2+4ci4]t}/24c44,
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k~ = 1t
2/12,

y"" = C",,-C~bJC44

yss = cSS - C~6/C66;

Strain-displacement relations

s(O) - u(O)
1 - 1,1'

s(O) = u(O)
3 3,3'

s(O) = u(O) +u(1)
4 2,3 3'

s~O) = dO) +u(O)
~ 3,1 1,3'

s(O) - u(O) +u(1)
6 - 2,1 l'

a,b = 1,3,

S\l) = u\~L

S(l) - u(1)
3 - 3,3'

s(1) - U(l) +u(1) .
S - 1,3 3,1'

(3)

Boundary conditions

For the free edges of a r~angular plate of length 21 and width 2w,

t\O) = t~O) = t~O) = t\l) = t~1) = 0 on Xl = ±w,

t~O) = t~O) = t!:') = t~l) = t~l) = 0 on X3 = ± I.

MOTION INDEPENDENT OF Xl

(4)

(5)

We consider the case in which h = h(x3) and in which

u\O) = U(X 3)eiw', u~O) = u~O) = 0,

U\l) = Y,(X3)eiwl, U~l) = o.
The nonzero components of displacement are the face-shear, u\O), and the thickness-twist,
U\l); .These displacements are illustrated in Fig. 1. The corresponding nonzero strain
components are

(6)

X3

FlO. I. Thickness-twist and face-shear displacements.
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where' == d/dx3' The associated nonzero stress-resultants are

r~O) = 2h(cssu' +k6cS6l/J)eiw"

r~O) = 2hk6(cS6U'+ k6c66l/J)eiw"

r~1) = th3ySsl/J'eiw,.

(7)

(8b)

For the AC-cut of quartz the elastic coefficient CS6 is zero, and equations (7) are
considerably simplified. For the AT-cut of quartz CS6 is small relative to CSS and C66'
and as a first approximation we can take it identically equal to zero. It is evident from the
work in [3] that this assumption should not prohibit the matching of theoretical with
experimental results. With this assumption, inserting (7) into (1) we obtain

h' -
u" +hu' + f32 u = 0, (8a)

l/J" +3:' l/J' + (f32- ~;)l/J = 0,
where

We note that with the assumption CS6 = °the equations governing the thickness-twist
and the equations governing the face-shear are completely uncoupled, and hence the
motions can occur at different frequencies, wand ro.

LINEARLY TAPERED INFINITE STRIP

We consider the special case of an infinite strip with a linear taper in the X3 direction;
see Fig. 2. The taper is given by

The edges X3 = °and X3 = Zare free, thus the boundary conditions, (4), become

u' = l/J' = ° on (9)

Inserting the condition for the linear taper into (8) we obtain

1 -
u" +-u' + f32u = 0,

X3

l/J" +.il/J' + (f32- Y:Z:)l/J = 0.
X3 hOX3

The general solution of (10) is

U(X3) = AJo(f3x3)+BYo(J3X3),

l/J(X3) = xi 1(CJp(f3x3)+D Yp({3X3»,

(lOa)

(lOb)

(lla)

(llb)
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FIG. 2. Linearly tapered infinite strip.
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where J p and Yp are Bessel functions of the first and the second kind respectively, A, B,
e, D are constants, and

(12)

Applying the boundary conditions, (9), we obtain A = D = °and the secular equations

where

JI(:t) = 0,

A.JP_I(.~.)-(I+p)Jp(A.) = 0,

(13a)

(13b)

A. == pI.

Introducing as a reference frequency the frequency, w., of the lowest XI' X2 thickness­
shear mode of a uniform plate of thickness 2ho, i.e.

we find for the nondimensional frequencies, 0.. and Om, of the nth mode of face-shear
and the mth mode of thickness-twist,

fi" == IDn=.!. {css"f (to).:tn n = integer, (14a)
w. 1t \(;66) I

Om == W
m=..! (cssY(to)A.m m =integer, (14b)

w. 1t \(66) I

where to == 2ho is the maximum thickness of the plate and :tn. A.mare the successive roots
of equations (13a) and (13b). In Fig. 3 the nondimensional frequencies, n.. and Om, are
plotted as functions of the length-to-thickness ratio, I/to.
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FIG. 3. Dimensionless frequencies of thickness-twist and face·shear modes in a linearly tapered
plate as a function of length-to-thickneu ratio.

COMPARISON WITH THE STRIP OF CONSTANT TlUCKNESS

In the case where h(X3) ;: ho, a constant, equations (8) become

it' + p2jj = 0,

~"+ ~2_ ~;)Vi'" O.

The solution of (15) can be written as

ii ... Ae sin (JX3 +Be cos (Jx 3,

Vi = Ce sin ~X3 +Dc cos ,)x3,

where .4.., Be, Cr , Dc are constants and

~2 !!! p2 -12/h~.

Applying the boundary conditions (9) we obtain A := C := 0 and

sin (JI := 0, sin t51 = 0,

(15a)

(ISb)

from which

ii, = qn/I

6. = nell

q = integer,

r == integer.
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(16a)

(16b)

(17)

Again, introducing (IJ. as a reference frequency we find for the nondimensional frequencies,
l"1qc and n..e, of the qth mode of face-shear and the rth mode of thickness-twist,

Oqe == :: = q e::J C;)'
o,e == :: = [1+r2~::e;rr

It is interesting to investigate the effects of the tapering by comparing the influence
of the length-to-thickness ratio on the frequencies calculated from (16) and (14). For the
face-shear modes, the comparison is easy to achieve. For large n, the nth root of (13a)
is given approximately by

1" = n(n+i),

and thus

()" n+i
l"1qc = -q-

We see that there is very little difference between the frequency of the kth Jrrde
(k = n = q) of face-shear in a tapered plate and its frequency in a uniform plate. This
result is not surprising for the following reason. The solution for the face-shear vibrations
of a uniform plate reveals that the frequencies of these vibrations are independent of the
thickness of the plate. The same lack of explicit dependence on the thickness is exhibited
by the frequencies, lOll' of the face-shear modes of the tapered plate, since the solutions,
1", of (13a) are independent of the thickness. Thus the only dependence on the thickness
is a "shape effect" which introduces Bessel functions for a tapered plate inatoad of the
circular functions which govern the motion in a uniform plate, and although the dis­
placement pattern is altered by these functions, the frequencies remain substantially
the same.

For the thickness-twist modes the effects of the tapering can not be readily isolated
in analytical form because the length-to-thickness ratio is contained in the order, p,
of the Bessel function, and, in addition, the roots of the secular equation, (1)b), are not
conveniently representable by a simple expression. Nevertheless, it is possible to calculate
the effects numerically. In Table 2 the ratio, o"./n,e, of the nondimensional frequency of
the linearly tapered plate to that of the constant thickness plate is given for mand r = 1, 3, 6
for several values of the length-to-thickness ratio.

TABLE 2. RATIO OF THB THICKNESS-TWIST FREQUENCIES

OF A LINEARLY TAPERED PLATE TO THOSE OF A UNIFORM

PLATE

n",;o",
lito

m=r-=1 m-=r=3 m-=r=6

20 1·0612 1-3183 1·5105
25 1-0539 1·2790 1·4641
30 1'0484 1·2492 1·4236
35 1-0441 1·2260 1·3893
40 1·0407 1·2073 1-3603
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It is evident from Table 2 that the frequency of the lowest thickness-twist mode for
the tapered plate is only slightly higher than that for the uniform plate whose thickness
is equal to the maximum thickness of the tapered plate, and not twice as high as might
be expected by assuming that the frequency spectrum of the tapered plate is comparable
to that of a uniform plate whose thickness is equal to the average thickness of the tapered
plate. It is also evident from Table 2 that the overtones of the thickness-twist modes of
the tapered plate are spread out more than those of the uniform plate. Analogous behavior
was noted by Mindlin and Forray [1] in their study of the thickness-shear and flexural
vibrations of tapered plates, and an identical explanation can be offered to account for the
present results. As will be shown in the following section, the fundamental thickness-twist
motion is highly concentrated near the thick edge of the tapered plate and hence the
motion is largely determined by the characteristics of the thick edge. For the overtones,
however, a greater portion of the plate participates in the motion, and with this can be
associated the spreading of the frequencies of the overtones.

MODE SHAPES

The nth mode of thickness-twist motion is described by

IjJn = ljJ:lx:; 1J p(AnX3/l)

where 1/1: is an arbitrary constant. In Fig. 4 several mode shapes, IjJJIjJ:, are plotted as a
function of x3/1, the nondimensional distance along the plate measured from the thin
edge. It can be seen that for the fundamental mode the amplitude of the motion is negligible
for nearly 80 per cent of the length of the plate. For the overtones, the maximum amplitude
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of the motion moves in from the thick edge, and a greater portion of the plate participates
in the motion.

The nth mode of face-shear motion is described by

Un = U:Jo(lnx3/l)

where u: is an arbitrary constant. In Fig. 5 several mode shapes, uJU:, are plotted as a
function of x3/1. These mode shapes are different in character from those of the thickness­
twist motion. The motion in the fundamental mode and the low overtones of face-shear
is more evenly distributed throughout the length of the plate although the maximum
amplitude always occurs at the thin edge. In the higher overtones of face-shear, the
motion becomes more and more localized near the thin edge of the plate.
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Resume-Des solutions sont obtenues pour les vibrations de torsion d'epaisseur et de cisaillement de surface
dans une plaque de crystal d'une epaisseur lineaire variie. Les resultats sont compares a ceux obtenus pour
une plaque d'epaisseur constante. II a ete constate que la frequence du mode Ie plus bas de torsion d'epaisseur
d'une plaque lineaire conique est seulement legerement plus elevie que la frequence du mode Ie plus bas de
torsion d'epaisseur d'une plaque uniforme de la meme epaisseur maximum. II a ete aussi constate que les
frequences du mode de cisaillement de surface d'une plaque conique differe legerement de ceux d'une plaque
uniforme.

ZlI88DlIDem-..g-Losungen fUr die Dickenverdrehung und fUr F1iichenscherungs Schwingungen in einer
Kristallplatte von linear veriinderIicher Dicke werden erhalten. Die Ergebnisse werden mit denen von einer
Platte von bestiindiger Dicke verglichen. Es wurde gefunden, das die Frequenz der niedrigsten Dickenverdre­
hungs Anordnung einer konischen !inearen Platte ist nur etwas hoher als die Frequenz der niedrigsten Dicken­
verdrehungs Form einer g1eichfOrmigen Platte derselben maximalen Dicke. Es wurde also gefunden, das
die Frequenzen der Fliichenscherungs Formen in einer konischen Platte nur sehr wenig verschieden sind
von denen einer gleichfOrmigen Platte.

A6CTpaKT-nOJIY'leHbl peweHKlI AJIli KOJIe6aHlt.H B 3aBlt.CHMOCTH OT TOJIWHHbI-KpY'leHHlI It. nosepxHocTH­

C.IUIHra B ICpHCTaJlJ1H'lecICOlt WIacTHHe C JIHHeltHo H3MeHlIIOlUeAclI TOJIWHHOA:. Pe3YJIbTaTbI CpaBHHBaIOTCli

C TeMH pe3yJIbTaTaMH, ICOTopbIe nOJIY<feHbI AJIlI WIacTHHbI C nOCTollHHoA: TOJIIUHHOA:. Haaz.eHO, 'ITO

'lacTOTa cjIoPMbI C caMOit MaJIOA: TOJIWHHOit ICPY<feHHlI JIHHeitHo ICOHH'lecICOA: nnaCTHHbI TOJIbKO CJIerKa

npeBbIWaeT '1acTOTy cl>OPMbI caMOA: MaJIoA TOJIWHHbI-ICPY'leHHlI OAHOPOAHOA: WIacTHHbI TalColt lKe MaKCH­

MaJ1l>HoA TOJIWHHbI. HaAAeHo, TalClKe, 'ITO 'laCTOTbI cjIopM noaepXHOCTHoro-cABHra B ICOHH'lecKOit nJIaCTHlie

O'leHb MaJIO OTJIH'laIOTCli OT 'laCTOT B O,ll;HOPO,ll;HOit nJIacTHHe.


