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THICKNESS-TWIST AND FACE-SHEAR VIBRATIONS OF A
CONTOURED CRYSTAL PLATE
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Abstract—Solutions “are obtained for the thickness-twist and face-shear vibrations in a crystal plate with a
linearly varying thickness. The results are compared to those obtained for a plate of constant thickness. It is
found that the frequency of the lowest thickness-twist mode of a linearly tapered plate is only slightly higher
than the frequency of the lowest thickness-twist mode of a uniform plate of the same maximum thickness. It
is also found that the frequencies of the face-shear modes in a tapered plate differ very little from those in a
uniform plate.

INTRODUCTION AND SUMMARY

INTEREST in the analysis of the vibrations of contoured plates (plates of varying thickness)
stems from at least two sources. In the first place a study of these vibrations might point
the way to the design of new transducer devices based on special features of the frequency
spectrum. Secondly, the results should be useful for determining the effects of small
manufacturing errors on the frequency spectrum of a plate of nominally constant thick-
ness.

Previous studies [1], [2], of the vibrations of contoured crystal plates have dealt with
the coupled thickness-shear and flexural vibrations in which there is a nonzero component
of displacement in the direction along which the thickness varies. In the present paper,
an investigation is made of modes of motion of a contoured plate in which the displace-
ments are all perpendicular to the direction along which the thickness varies. The par-
ticular modes under consideration are the thickness-twist and the face-shear modes,
and as Mindlin and Gazis have pointed out [3], [4], they are modes of technological
interest since they can be strongly excited piezoelectrically in a quartz plate.

Thickness-twist vibrations are contained in the equations of the approximate theory
which is the starting point for the analysis in [1] and [2}). However a more general approxi-
mate theory has been developed [5] which takes into account the coupling of flexural,
extensional and face-shear deformations with each other and with the lowest thickness
orders of thickness-shear and thickness-twist deformations. In the present paper, the
equations and the notation of the more general theory are employed.

The equations are specialized to the case of an infinite strip which has a linear taper
in the direction perpendicular to its infinite dimension. In the sequel this strip will be
referred to simply as a plate. It is found that the frequency of the lowest thickness-twist
mode of a linearly tapered plate is only slightly higher than the frequency of the lowest
thickness-twist mode of a uniform plate whose thickness is equal to the maximum thick-
ness of the tapered plate. In addition, the frequencies of the thickness-twist overtones
are spread out more in a tapered plate than they are in a uniform plate. These results
can be associated with the fact that the fundamental thickness-twist motion is localized
at the thick edge of the plate whereas, for the overtones, a greater portion of the plate is
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involved in the motion. It is also found that the frequencies of the face-shear modes
in a tapered plate differ very little from those in a uniform plate. This result is consistent
with the solution for a uniform plate where it is found that the frequencies of the face-
shear modes are independent of the thickness of the plate.

GOVERNING EQUATIONS

The stress-strain relation of a rotated-Y-cut quartz plate, referred to a rectangular
cartesian coordinate system, x,, Xx;, X3, With x; a diagonal axis and x, = 0 the middle
plane of the plate, exhibits monoclinic symmetry [6]. An abbreviated notation is employed
whereby a pair of indices which range over the integers 1, 2, 3 is replaced by a single
index ranging over the integers 1, 2, 3, 4, 5, 6 according to the scheme in Table 1:

TABLE 1. ABBREVIATED NOTATION

Replace if = 1122133723 or 32 {31 or 1312 or 21
byp = 11213 4 5 6

With this notation the governing equations 5] for the free vibrations of a plate of thick-
ness 2h are:

Stress equations of motion

P+ 10} = 2hpi?,
o) +1 = 2hpi?,
O +10) = 2hpi), (1)
0y +e) — e = o)
G — o) = o)

where, q(a = 1, 3) denotes the partial derivative, d/0x,, and the dot denotes partial
differentiation with respect to time;

Constitutive equations
T = 2het s p.a=12,...,6, @
Y = gy s? g b=1,3,5

where

. _ Lu Ly A
Cpq = kipkinCprq» ~ MO sum on p or g,

9
{

pa = Cpg—Cp2C2q/Ca2s
€15 = €35 = C35 = C45 = C16 = C26 = C36 = C46 = 0,
cos¥(pn/2), v = cos?(qn/2),

ki = m2{cas+ Caa— (€22 — Coa)? + 4¢3 11} /240 s,

®
it

I



Thickness-twist and face-shear vibrations of a contoured crystal plate
k2 = n?/12,
Yab = Cab— C4aCpa/Cas a,b=13,

_ 2 .
Vss = Cs5—C56/Ce6

Strain—displacement relations

0 0 1 1
S(l ) = u(| ') s s( ) u( ’) ,
go — 0 1) _ 1
S ) = u(s’)s, S(3 ) == u(3,)3,

9 = ufh ),
0 = w0 = bl
5 = uf) +ul),
Boundary conditions
For the free edges of a rectangular plate of length 2!/ and width 2w,
P =10 =10=P=¢=00nx, = tw,

W =10 =P =P =1 =00nx; = +1

MOTION INDEPENDENT OF x,
We consider the case in which h = h(x;) and in which
u(IO) - ﬁ(x3)e"‘”‘, u(20) = “go) =0,

u) = P(xs)e’™, ul) = 0.
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The nonzero components of displacement are the face-shear, u{”, and the thickness-twist,
u{). These displacements are illustrated in Fig. 1. The corresponding nonzero strain

components are

$0 = e, sO = gl s = yrei

4&- |
|
|~
\ FACE~SHEAR
X2
THICKNESS -TWIST

Xy

X3

Fi1G. 1. Thickness-twist and face-shear displacements.
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where ' = d/dx;. The associated nonzero stress-resultants are
1) = 2h(cssit’ +kscseth)e™™,
1§ = 2hkg(csel’ + kocost)e™, (M
) = Fhdyssper.
For the AC-cut of quartz the elastic coeflicient ¢4 is zero, and equations (7) are
considerably simplified. For the AT-cut of quartz cse is small relative to css and cge,
and as a first approximation we can take it identically equal to zero. It is evident from the

work in [3] that this assumption should not prohibit the matching of theoretical with
experimental results. With this assumption, inserting (7) into (1) we obtain

’

W_
ﬁ”+zﬁ’+ﬁ2ﬁ =0, (8a)

3h¢ 2
l//”+‘h‘l//+<ﬁ2_;}?>d/ = 0’ (Sb)
where
B* = pw?/css, B? = p@?/css, y* = 3kgcee/Css.

We note that with the assumption ¢5¢ = 0 the equations governing the thickness-twist
and the equations governing the face-shear are completely uncoupled, and hence the
motions can occur at different frequencies, w and @.

LINEARLY TAPERED INFINITE STRIP
We consider the special case of an infinite strip with a linear taper in the x5 direction;
see Fig. 2. The taper is givén by

h
h(x;) = —x3.

l
The edges x; = 0 and x; = [ are free, thus the boundary conditions, (4), become

=y =0 on x; =01 )

Inserting the condition for the linear taper into (8) we obtain

W+iw+ﬂa=a (10a)
X3
" 3 ' 2 ,))212 _
¥ +x3¢ +<ﬁ ~ Wi Y =0 (10b)

The general solution of (10) is
ii(x3) = AJo(Bx3)+ BY,(fxs), (11a)
Y(x3) = x5 (CJ (Bx3)+ DY, (Bx3)), (11b)
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X2

T X

to=2ho -1

F1G. 2. Linearly tapered infinite strip.

where J, and Y, are Bessel functions of the first and the second kind respectively, A4, B,
C, D are constants, and

p? = 1+y2/h. (12)

Applying the boundary conditions, (9), we obtain A = D = 0 and the secular equations

J,:A) =0, (13a)
M, (D=1 +pJ A =0, (13b)
where
i=p, 1=pl

Introducing as a reference frequency the frequency, w,, of the lowest x,, x, thickness-
shear mode of a uniform plate of thickness 2h,, i.e.

4
o, = T [Css )
2ho\ p

we find for the nondimensional frequencies, Q, and Q,,, of the nth mode of face-shear
and the mth mode of thickness-twist,

_ @y 1 fessY (o) .
=0z (0665 ( 7JA  n = integer, (14a)
w 1 fessY(t
Qm = m —_ .ﬁ —q =1
W, T (065) (l ) m = nteger ()

where t, = 2h, is the maximum thickness of the plate and 4, 4,, are the successive roots
of equations (13a) and (13b). In Fig. 3 the nondimensional frequencies, {, and Q,,, are
plotted as functions of the length-to-thickness ratio, I/t,.
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Fic. 3. Dimensionless frequencies of thickness-twist and face-shear modes in a linearly tapered
plate as a function of length-to-thickness ratio.

COMPARISON WITH THE STRIP OF CONSTANT THICKNESS
In the case where h(x;) = h, a constant, equations (8) become

i+ p*ia = 0,

{15a)

.yZ

v+ (B’ ——5)»’1 = (15b)
h

The solution of (15) can be written as

il = A_sin fx;+ B, cos fix;,
¥ = C,sin 8x3 + D, cos dx,,
where A,, B,, C,, D. are constants and

5 = g —yi/h}
Applying the boundary conditions (9) we obtain 4 = C = 0 and

sinfl=0, sindl=0,
from which
B, =an/l  q = integer,
d, = rufl

r = integer.
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Again, introducing «, as a reference frequency we find for the nondimensional frequencies,
Q, and Q,, of the gth mode of face-shear and the rth mode of thickness-twist,

= Dy _ E* lo
Q= Pk (C“> (7) (16a)
4
Q=2 [1+r25’i(51‘1>2] (16b)

Ce6

It is interesting to investigate the effects of the tapering by comparing the influence
of the length-to-thickness ratio on the frequencies calculated from (16) and (14). For the
face-shear modes, the comparison is easy to achieve. For large n, the nth root of (13a)
is given approximately by

Zn = 7!("-}-%),
and thus

=13 17)

We see that there is very little difference between the frequency of the kth mede
(k = n = q) of face-shear in a tapered plate and its frequency in a uniform plate. This
result is not surprising for the following reason. The solution for the face-shear vibrations
of a uniform plate reveals that the frequencies of these vibrations are independent of the
thickness of the plate. The same lack of explicit dependence on the thickness is exhibited
by the frequencies, @,, of the face-shear modes of the tapered plate, since the solutions,
A, of (13a) are independent of the thickness. Thus the only dependence on the thickness
is a “shape effect” which introduces Bessel functions for a tapered plate instead of the
circular functions which govern the motion in a uniform plate, and although the dis-
placement pattern is altered by these functions, the frequencies remain substantially
the same.

For the thickness-twist modes the effects of the tapering can not be readily isolated
in analytical form because the length-to-thickness ratio is contained in the order, p,
of the Bessel function, and, in addition, the roots of the secular equation, (13b), are not
conveniently representable by a simple expression. Nevertheless, it is possible to calculate
the effects numerically. In Table 2 the ratio, Q,/€Q,., of the nondimensional frequency of
the linearly tapered plate to that of the constant thickness plate is given formandr = 1,3, 6
for several values of the length-to-thickness ratio.

TABLE 2. RATIO OF THE THICKNESS-TWIST FREQUENCIES
OF A LINEARLY TAPERED PLATE TO THOSE OF A UNIFORM

PLATE
Q./Q.
Ity
m=r=1| m=r=3! m=r=6
20 1:0612 1-3183 1-5105
25 1-0539 12790 1-4641
30 1:0484 1-2492 1-4236
35 10441 1-2260 1-3893
40 1-0407 12073 1-3603
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It is evident from Table 2 that the frequency of the lowest thickness-twist mode for
the tapered plate is only slightly higher than that for the uniform plate whose thickness
is equal to the maximum thickness of the tapered plate, and not twice as high as might
be expected by assuming that the frequency spectrum of the tapered plate is comparable
to that of a uniform plate whose thickness is equal to the average thickness of the tapered
plate. It is also evident from Table 2 that the overtones of the thickness-twist modes of
the tapered plate are spread out more than those of the uniform plate. Analogous behavior
was noted by Mindlin and Forray [1] in their study of the thickness-shear and flexural
vibrations of tapered plates, and an identical explanation can be offered to account for the
present results. As will be shown in the following section, the fundamental thickness-twist
motion is highly concentrated near the thick edge of the tapered plate and hence the
motion is largely determined by the characteristics of the thick edge. For the overtones,
however, a greater portion of the plate participates in the motion, and with this can be
associated the spreading of the frequencies of the overtones.

MODE SHAPES
The nth mode of thickness-twist motion is described by
l/ln = l//:lx; IJp(AnXS/D

where y* is an arbitrary constant. In Fig. 4 several mode shapes, /¥, are plotted as a
function of x,/l, the nondimensional distance along the plate measured from the thin
edge. It can be seen that for the fundamental mode the amplitude of the motion is negligible
for nearly 80 per cent of the length of the plate. For the overtones, the maximum amplitude

¥n
¥
o

o 10 .20 30 40 .50 .60 70 .80 .90 1.00
X3/L

FiG. 4. Thickness-twist mode shapes for a linearly tapered plate with length-to-thickness ratio,
Ity = 20
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of the motion moves in from the thick edge, and a greater portion of the plate participates
in the motion.
The nth mode of face-shear motion is described by

i, = ﬁ:Joanxs/I)

where #F is an arbitrary constant. In Fig. 5 several mode shapes, i,/i*, are plotted as a
function of x3/l. These mode shapes are different in character from those of the thickness-
twist motion. The motion in the fundamental mode and the low overtones of face-shear
is more evenly distributed throughout the length of the plate although the maximum
amplitude always occurs at the thin edge. In the higher overtones of face-shear, the
motion becomes more and more localized near the thin edge of the plate.
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F1G. 5. Face-shear mode shapes for a linearly tapered plate.
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Résumé—Des solutions sont obtenues pour les vibrations de torsion d’épaisseur et de cisaillement de surface
dans une plaque de crystal d’une épaisseur linéaire variée. Les résultats sont comparés 4 ceux obtenus pour
une plaque d’épaisseur constante. Il a été constaté que la fréquence du mode le plus bas de torsion d’épaisseur
d’unc plaque linéaire conique est seulement légérement plus élevée que la fréquence du mode le plus bas de
torsion d’épaisseur d’une plaque uniforme de la méme épaisseur maximum. Il a €t€ aussi constaté que les
fréquences du mode de cisaillement de surface d’une plaque conique différe 1égérement de ceux d’une plaque
uniforme.

Zusammenfassung—Losungen flir die Dickenverdrehung und fiir Flachenscherungs Schwingungen in einer
Kristallplatte von linear verinderlicher Dicke werden erhalten. Die Ergebnisse werden mit denen von einer
Platte von bestindiger Dicke verglichen. Es wurde gefunden, das die Frequenz der niedrigsten Dickenverdre-
hungs Anordnung einer konischen linearen Platte ist nur etwas héher als die Frequenz der niedrigsten Dicken-
verdrehungs Form einer gleichformigen Platte derselben maximalen Dicke. Es wurde also gefunden, das
die Frequenzen der Flichenscherungs Formen in einer konischen Platte nur sehr wenig verschieden sind
von denen einer gleichférmigen Platte.

AGerpakT—Tlo/ydeHbi pelteHns Ans kojiebanuii B 3aBUCMMOCTH OT TOJIWHHbI-KPYUEHUS W MOBEPXHOCTH-
CHOBMra B KPHCTAJLTHYECKOR IUIACTHHE C JIMHEHHO M3IMeHMOWEHCS TONUMHOR. Pe3ynabTaThl CpaBHHBAIOTCS
C TeMH pe3ynbTaTaMH, KOTOpbIC MOJYYEHbI U IUIACTMHBI C MOCTOsHHOM Tonumuolt. Haiineno, uto
yacrora GOpPMBI ¢ caMOM Mano#l TONMUIMHOK KPY4YeHUS JIHHCHHO KOHMUYECKOH IUTACTHHBI TOJBKO ClIErKa
NPEBLILACT YACTOTY GOPMBL CaMOH Masoi TONILHHBI-KPYUCHUS ONHOPORHOH IUIACTHHBI TaKOH e MakcH-
MabHOIM ToMuMHbl. HaltieHo, Takxe, YTO YaCTOTHI GOPM MOBEPXHOCTHOTO-CABUra B KOHHYECKOH M1acTule
OY€Hb MAJIO OT/JMYAIOTCA OT 4acTOT B OAHOPOAHOH IUIACTHHE.



